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Abstract. Rapid urbanization in China has led to heavy traf-
fic flows in street networks within cities, especially in east-
ern China, the economically developed region. This has in-
creased the risk of exposure to vehicle-related pollutants.
To evaluate the impact of vehicle emissions and provide an
on-road emission inventory with higher spatiotemporal res-
olution for street-network air quality models, in this study,
we developed the Real-time On-road Emission (ROE v1.0)
model to calculate street-scale on-road hot emissions by us-
ing real-time big data for traffic provided by the Gaode
Map navigation application. This Python-based model ob-
tains street-scale traffic data from the map application pro-
gramming interface (API), which are open-access and up-
dated every minute for each road segment. The results of ap-
plication of the model to Guangzhou, one of the three major
cities in China, showed on-road vehicle emissions of carbon
monoxide (CO), nitrogen oxide (NOx), hydrocarbons (HCs),
PM2.5, and PM10 to be 35.22×104, 12.05×104, 4.10×104,
0.49× 104, and 0.55× 104 Mg yr−1, respectively. The spa-
tial distribution reveals that the emission hotspots are lo-
cated in some highway-intensive areas and suburban town
centers. Emission contribution shows that the dominant con-
tributors are light-duty vehicles (LDVs) and heavy-duty vehi-
cles (HDVs) in urban areas and LDVs and heavy-duty trucks
(HDTs) in suburban areas, indicating that the traffic con-
trol policies regarding trucks in urban areas are effective.
In this study, the Model of Urban Network of Intersecting
Canyons and Highways (MUNICH) was applied to investi-
gate the impact of traffic volume change on street-scale pho-

tochemistry in the urban areas by using the on-road emission
results from the ROE model. The modeling results indicate
that the daytime NOx concentrations on national holidays are
26.5 % and 9.1 % lower than those on normal weekdays and
normal weekends, respectively. Conversely, the national hol-
iday O3 concentrations exceed normal weekday and normal
weekend amounts by 13.9 % and 10.6 %, respectively, owing
to changes in the ratio of emission of volatile organic com-
pounds (VOCs) and NOx . Thus, not only the on-road emis-
sions but also other emissions should be controlled in order
to improve the air quality in Guangzhou. More significantly,
the newly developed ROE model may provide promising and
effective methodologies for analyzing real-time street-level
traffic emissions and high-resolution air quality assessment
for more typical cities or urban districts.

1 Introduction

Rapid economic development and urbanization have led to an
exponential growth in the number of vehicles in China in re-
cent years (National Bureau of Statistics of China, 2017). As
one of the three major urban clusters, the Pearl River Delta
(PRD) region, or its main city Guangzhou, has experienced a
significant increase in the number of vehicles. This increase
has become the dominant contributor to carbon monoxide
(CO), nitrogen oxide (NOx), and hydrocarbon (HC) emis-
sions (He et al., 2002; Zheng et al., 2009a), which in turn
are causing more frequent and more severe public health
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problems in Chinese megacities (An et al., 2013). Previous
studies have shown that on-road vehicle emissions can con-
tribute approximately 22 %–52 % of total CO, 37 %–47 % of
total NOx , and 24 %–41 % of total HC emissions detected in
cities (Zhang et al., 2009; Zheng et al., 2009a, 2014; Li et al.,
2017).

Reliable on-road emission inventories can be used as input
data for the numerical air quality models which are applied
to estimate the impact of on-road emissions on the urban air
quality (Wang and Xie, 2009; He et al., 2016). For this pur-
pose, a realistic on-road vehicle emission inventory should be
developed for this pollution source. The two main method-
ologies used in recent years to establish such inventories are
top-down and bottom-up techniques.

Top-down methods, such as that used in the MOBILE
model devised by the US Environmental Protection Agency
(EPA, 2003) and other similar macroscale models, first re-
quire information on vehicle population, vehicle kilometers
traveled (VKT), and mean vehicle speed for an entire city
to calculate the total amount of vehicular emissions. Then,
the emissions are allocated to each grid cell utilizing param-
eters such as road density and road hierarchy (Saide et al.,
2009; Jing et al., 2016; Liu et al., 2018). Many studies have
adopted this method to develop city- or national-level vehi-
cle emission inventories in China (Hao et al., 2000; Cai and
Xie, 2007; Guo et al., 2007; Saide et al., 2009; Zheng et al.,
2009a; Sun et al., 2016). However, the top-down inventories
offer low-level spatial and temporal resolutions because of
the allocation method and input data used. Typically, the spa-
tial allocation of a top-down inventory is based on the road
network. The greater the road density and length, the higher
the amount of emissions in the same grid. This allocation
method simplifies the road emissions by assuming that ev-
ery road of a specific road type (e.g., highway, arterial road,
or local road) experiences the same traffic volume irrespec-
tive of its location. In addition, emission factors are consid-
ered to remain unchanged despite the traffic speed over the
entire city, thereby leading to inaccurate results for the in-
ventory. Moreover, some megacities (e.g., Guangzhou) have
traffic control policies in place in certain urban areas, which
implies that the emissions should differ across areas. Besides,
the VKT data are usually provided on the yearly scale, which
limits the temporal resolution of the inventory. For numerical
modeling, the accuracy of the emission inventory may have
a great impact on the simulation results because of the strong
dependence of numerical models on it (Jing et al., 2016).
This scale of the emission inventory may not reflect the real
emission conditions for the on-road vehicles within the city,
and thus evaluations of traffic-related impacts on air pollu-
tion in complex situations such as street-level traffic flow are
likely to be inaccurate (Huo et al., 2009).

Consequently, several studies have established higher-
resolution inventories using the bottom-up approach. The
main difference from the top-down method is that bottom-
up inventories are based on information from road segments.

Therefore, spatial distribution is directly obtained from the
input data and spatial and temporal allocations are not re-
quired. Among the input data, the traffic data are crucial for
establishing the inventories and determining their accuracy.
Some previous studies have used traffic simulation models to
obtain traffic speed or volume data of road networks (Palla-
vidino et al., 2014; Zhang et al., 2016; Chen et al., 2017;
Ibarra-Espinosa et al., 2018). Based on the traffic model, the
method could provide traffic data for each road from low-
resolution average data. However, the results from such traf-
fic models may not reflect reality, thereby reducing the ac-
curacy of the inventories. Many other studies have used real-
istic traffic data, namely road-side or on-board observational
data obtained at certain road segments, to establish inven-
tories and improve their accuracy (Huo et al., 2009; Wang
et al., 2008, 2010; Wang and Xie, 2009; Yao et al., 2013).
Although the observed traffic data are helpful for inventory
establishment, their limitation is obvious in that large-scale
observation for a whole city requires extensive human labor
and financial and material resources, which are expensive
and time consuming. Moreover, such observations may not
provide real-time traffic data, thereby reducing the temporal
resolution of the inventories.

Recent developments in image identification technology
and other observation detectors are facilitating easy collec-
tion of real-time traffic data from road networks. The exten-
sive implementation of closed-circuit televisions and other
detection subsystems in cities helps intelligent transport sys-
tems (ITSs) in China (Wu et al., 2009), making it possible to
attain real-time traffic data at the city scale. Using the traffic
data provided by ITSs, many previous studies have success-
fully developed inventories for different areas in China (Jing
et al., 2016; Liu et al., 2018; Zhang et al., 2018). Such stud-
ies provided us with a new direction for the establishment
of bottom-up inventories. The real-time traffic data from the
road network could be the most precise input data for on-
road emission inventories and could significantly improve
the spatial and temporal resolutions of the inventories. How-
ever, there are still some difficulties in using the ITS data. In
some cities, construction of the ITS is not complete yet or has
not even been carried out. Moreover, the inconsistency of the
data standards leads to an inefficient way of data utilization
(Zhang, 2010). Furthermore, the low degree of data sharing
may be the biggest barrier to using traffic data obtained from
the ITSs (Huang et al., 2017).

With the help of a high-resolution emission inventory, nu-
merical models can assess the impact of on-road vehicle
emissions on the air quality (Huo et al., 2009). The air flow
and air quality modeling in cities are commonly categorized
into four groups by length scales, i.e., street scale (∼ 100 m),
neighborhood scale (∼ 1 km), city scale (∼ 10 km), and re-
gional scale (∼ 100 km) (Britter and Hanna, 2003). A pre-
vious comprehensive literature review on this topic (Zhang
et al., 2012) reports that regional-scale chemical transport
models (CTMs) have been widely applied to investigate the

Geosci. Model Dev., 13, 23–40, 2020 www.geosci-model-dev.net/13/23/2020/



L. Wu et al.: Development of the Real-time On-road Emission (ROE v1.0) model 25

chemistry and transport of air pollutants from their emission
sources. Many studies have successfully applied regional-
scale CTMs to investigate the impact of on-road vehicles on
the air quality in urban areas in the regional scale (∼ 100 km)
(Che et al., 2011; Saikawa et al., 2011; He et al., 2016; Ke et
al., 2017). In addition, some researchers have studied street-
scale and neighborhood-scale pollutant dispersion and urban
air quality by adopting computational fluid dynamics (CFD)
models (Fernando et al., 2010; Kim et al., 2012; Kwak et al.,
2013; Kwak and Baik, 2014; Park et al., 2015; Zhong et al.,
2016; Hang et al., 2017). City-scale (∼ 10 km) CFD mod-
eling, however, usually requires consideration of billions of
grids because a city may include tens of thousands of build-
ings with high-resolution and complex street networks (Di
Sabatino et al., 2008; Ashie and Kono, 2011). Thus, as city-
scale CFD simulations are very expensive and time consum-
ing, they are currently rare. Recently, some models have been
developed and applied to investigate street-level air quality at
the city scale (Davies et al., 2007; Righi et al., 2009; Zhang
et al., 2016; Kim et al., 2018) by balancing the requirements
of high resolution and low computational cost.

In this direction, the first purpose of this study was to find
a new open-access source of real-time and high-quality traf-
fic data that could serve as the input for developing an on-
road emission inventory with high spatial and temporal reso-
lutions for cities or urban districts. Guangzhou was selected
as the target city for the initial application of this method not
only because of the large number of vehicles in use there but
also because of its well-developed ITS which could obtain
the traffic information from street networks (Xiong et al.,
2010). A Python-based on-road emission model called the
Real-time On-road Emission (ROE v1.0) model was devel-
oped in this study to utilize these traffic data and establish a
bottom-up on-road emission inventory. A street-level chem-
istry transport model was then used to apply the emission
results and study the impact of traffic volume variations on
the air quality in the urban districts of Guangzhou.

2 Description of the ROE model

2.1 Model overview

The ROE model is intended to establish the street-level emis-
sion inventories using the emissions of on-road vehicles in
the street segments of interest using a bottom-up approach.
First, the ROE model collects the real-time traffic informa-
tion to obtain the traffic volume for each street segment from
the ITS. Then, according to the vehicle fleet information, the
ROE model calculates the number of vehicles for each vehi-
cle category on each street segment (if available, these data
could be obtained from the ITS and need not be calculated by
model). Thereafter, the ROE model calculates the emissions
for street segments based on the vehicle fleet information,
traffic conditions, and environmental conditions. Lastly, the

ROE model outputs the results, i.e., street-level air quality
inventories.

2.2 Model structure

The ROE model was developed to calculate on-road vehi-
cle emissions from real-time traffic data. The structure of
the model is shown in Fig. 1. The model, which has been
implemented in Python 3, can be divided into four mod-
ules: crawler, preprocessing, emissions calculation, and out-
put modules.

1. The most crucial part of the emission inventory involves
obtaining the real-world traffic data. The crawler mod-
ule is designed for crawling the real-time traffic data
from the ITS, Internet, or any other data source if the
code is updated to match the format of the data source.
Moreover, the study area should be set in the mod-
ule and, if needed (in case the coordinates differ), the
coordinate transformation script should be activated.
The current version of the ROE model includes the
crawler module for the https://www.amap.com (last ac-
cess: 2 September 2019) (also called the Gaode Map)
application (Fig. 2), a widely adopted map application
in China (additional details are provided in Sect. 2.4).

2. The preprocessing module is used for fitting the time
frequency between the data source and the air quality
modeling system. Subsequently, the traffic volume data
are also calculated from the traffic speed data in this
module if the traffic volume or vehicle fleet informa-
tion is not available from the data source. Otherwise,
the number of vehicles in each category can be used di-
rectly for the emissions calculation.

3. The emissions calculation module uses traffic informa-
tion from the preprocessing module and information
about vehicle fleets to calculate emissions for each street
segment using the following equation:

Es,t =

∑
EFs,v ×Vv,t ×L, (1)

where Es,t is the emission of pollutant s at time t

(g h−1), EFs,v is the emission factor of pollutant s for
vehicle category v (g km−1), Vv,t is the traffic volume
of the vehicle (i.e., the number of vehicles) category v

at time t (vehicles per hour), and L is the length of the
street segment (km). The total emission in one specific
area is given by the sum of emissions in every street
segment within the area.

4. The output module sums up all the information given by
the emissions calculation module and can be modified to
provide all the results produced during the calculation
of the emissions. In addition, the model includes a tool
that can modify the formats of the emissions, making
it possible to provide the on-road emissions to other air
quality models.
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Figure 1. The structure of the ROE model.

2.3 Emission factors

In this study, nationwide vehicle emission factors mandated
by the Ministry of Ecology and Environment (MEP) of the
People’s Republic of China were adopted to calculate the
on-road vehicle emissions (MEP, 2014). They are listed in
Tables S1 and S2 in the Supplement. The emission factors of
liquefied petroleum gas (LPG) vehicles were sourced from a
previous study conducted in Guangzhou (Zhang et al., 2013).
According to the MEP guide, vehicles are classified as one
of the following: a light-duty vehicle (LDV), a middle-duty
vehicle (MDV), a heavy-duty vehicle (HDV), a light-duty
truck (LDT), a middle-duty truck (MDT), a heavy-duty truck
(HDT), a motorcycle (MC), a taxi, or a bus. The fuel type
is classified as petrol, diesel, or other (such as LPG or nat-
ural gas). The emission standard is classified as Pre-China
I, China I, China II, China III, China IV, or China V. In ad-
dition, the evaporation of petrol was considered during the
calculation of the emissions. HC evaporation was also con-
sidered as per the details provided in the MEP guidebook
(Table S3).

The correction factors involving environmental conditions
(e.g., temperature, relative humidity, and altitude) and traffic
conditions obtained from the technical guide were consid-
ered in the study. They are listed in Tables S4–S10 in the
Supplement. These correction factors were applied to reduce
the effects of uncertainties associated with the emission fac-
tors.

To estimate the uncertainties in the emissions factors, the
results of previous studies (Zheng et al., 2009a; Zhang et al.,
2013, 2016; Tang et al., 2016; Wang et al., 2017) were sum-
marized and compared with the emission factors obtained in
this study. These results appear in Fig. S1 of the Supplement.

In addition, the emission factors can be easily updated
once the local emission factor data are available.

2.4 Traffic data from floating car data

In this study, the traffic speed data of each street segment
were obtained from Gaode Map. The Gaode Map traffic data
are quite extensive as they cover over 40 cities in China so far
(with most of them being major cities). Based on GPS and
mobile network information, details on vehicle speed and lo-
cation are collected from the map users’ devices while using
the map navigation on the road. This aspect saves a consid-
erable amount of human labor and material resources with
regard to traffic condition observations. These data are up-
dated in real time and can be used through an open-access
application programming interface (API), thus overcoming
the barrier of obtaining data. As the data can be updated in
real time, the emission data can also be refreshed in real time.

However, the map application cannot provide the traffic
volume data directly. Many studies have shown that the traf-
fic volume can be estimated using the average traffic speed
based on the relationship between the traffic speed and the
volume (Wang, 2003; Xu et al., 2013; Wang et al., 2013; Yao
et al., 2013; Hooper et al., 2014; Jing et al., 2016). Many
speed–flow models exist for this purpose and each of them
has certain advantages and disadvantages. In this study, the
Underwood volume calculation model (Underwood, 1961)
was used to retrieve the information on traffic volume be-
cause of its history of successful application in China (Jing
et al., 2016). The model is described by Eq. (2):

V = kmu ln
uf

u
, (2)
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where V is the traffic volume at speed u (vehicles per hour),
km is the traffic density (vehicles per kilometer), u is the traf-
fic speed (km h−1), and uf is the free speed (km h−1). In this
study, km and uf are given by fitting the model based on
observation data obtained at the roadside and video identi-
fication data gained from different road types (Zheng et al.,
2009a; Jing et al., 2016; Liu et al., 2018).

To calculate the traffic volume on national highways, an-
other speed–flow model, which was previously applied in an
observation-based study undertaken in China (Wang, 2003),
was used. This model is described as follows.

When the speed limit is 120 km h−1,

V =−0.611u2
+ 73.320u; (3)

when the speed limit is 100 km h−1,

V =−0.880u2
+ 88.000u; (4)

when the speed limit is 80 km h−1,

V =−1.250u2
+ 100.000u; (5)

when the speed limit is 60 km h−1,

V =−2.000u2
+ 120.000u; (6)

where V is the traffic volume at speed u (vehicles per hour)
and u is the traffic speed (km h−1).

Given Guangzhou’s traffic control policies, the whole city
is divided into two areas: urban area and suburban (Fig. 3).
Therefore, the traffic volume is also calculated accordingly
(Fig. 4). The main traffic control policies in urban areas are
as follows: (1) no truck is allowed to enter the urban area dur-
ing 07:00–09:00 LT (all times in this paper are local time, LT)
(morning rush hours) and 18:00–20:00 (evening rush hours),
(2) no middle- and heavy-duty truck is permitted to enter the
urban area during 07:00–22:00, (3) no nonlocal truck can en-
ter the urban area during 07:00–22:00, and (4) no motorcycle
can enter the urban area.

2.5 Vehicle fleet information

In this study, the fleet information on each vehicle classifica-
tion was sourced from the Guangzhou Statistical Yearbook
(Guangzhou Bureau of Statistics, 2017) (Fig. 5a). The emis-
sion standards (Fig. 5b) and fuel type data (Fig. 6) for the
vehicles were sourced from previous studies undertaken in
Guangzhou (Zhang et al., 2013, 2015). Due to the lack of
street-level vehicle fleet information, this study used a uni-
form percentage of emission standard, fuel type, and number
of vehicles in each category for each segment. The number
of each vehicle type was calculated based on the total traffic
volume of each street segment and the vehicle fleet percent-
age. It should be noted that this information could be updated
if the street-level fleet information becomes available in the
future.

3 Description of the street-level air quality model

To evaluate the impact of on-road emissions on air quality
at the street level in Guangzhou, an air quality model called
the Model of Urban Network of Intersecting Canyons and
Highways (MUNICH) was employed in this study with the
on-road emission results from the ROE model. MUNICH is
a street-network CTM that includes street-canyon and street-
intersection components in the model (Kim et al., 2018).

In this study, the Weather Research and Forecasting
(WRF) model (version 3.7.1) (Skamarock et al., 2008)
was used to provide the meteorological data (wind profile,
boundary-layer height, and friction velocity) for the model-
ing. The WRF simulation was conducted with four nested
domains at resolutions of 27, 9, 3, and 1 km (Fig. 7a). The
physical scheme is listed in Table 1.

In MUNICH, the CB05 chemical kinetic mechanism
(Yarwood et al., 2005) was used to simulate the photochemi-
cal reactions at the street level in an urban street network. For
the MUNICH run, the model was applied to simulate pollu-
tant dispersion in Tianhe District, which serves as the central
business district (CBD) of Guangzhou. The district is charac-
terized by significant diurnal traffic variation compared with
other districts in urban areas. The simulation area comprised
31 main street segments selected to simulate the variation in
pollutant concentrations because continuous traffic data ex-
isted for these street segments during the simulation period,
which were representative of the street network.

The urban morphology data for the building height were
obtained from the World Urban Database and Access Por-
tal Tools (WUDAPT) dataset (Ching et al., 2018). The street
data were sourced from the OpenStreetMap dataset (https:
//www.openstreetmap.org/, last access: 2 September 2019).
The street length data were calculated directly from the loca-
tions of the start and end intersections of each street segment.
Data on the street width were retrieved from the feature class
of the road and the width of each lane was assumed to be
3.5 m.

The simulation period of the study spanned from 28 April
to 2 May 2018, which included a Chinese national holiday
from 29 April to 1 May 2018. Significant traffic volume
change exists between the holidays and nonholidays. This
simulation period covered holidays and nonholidays, which
was helpful to investigate the impact of traffic volume varia-
tions on air quality. Another 3 d simulation period was con-
ducted before this period to spin up the model.

For modeling evaluation and background concentrations,
the observational concentration data for NO2 and O3 were
obtained from the Guangzhou environmental monitoring
sites network. NO2 concentrations were measured with a
chemiluminescence instrument (model 42i, Thermo Scien-
tific) and O3 was measured by a UV photometric ana-
lyzer (model 49i, Thermo Scientific). The minimum detec-
tion limit (3S/N) of the analyzer was 0.4 ppbV (approxi-
mately 0.8 µgm−3) for NO2 and 1.0 ppbV (approximately
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Figure 2. Traffic information from Gaode Map (© 2019).

Table 1. Physical parameterization configurations for WRF v3.7.1 model.

Physical parameterizations

Microphysics scheme Morrison (2 moments) (Morrison et al., 2009)
Land-surface scheme Pleim–Xiu (Xiu and Pleim, 2001)
Cumulus scheme Kain–Fritsch (Kain, 2004)
Longwave radiation scheme Rapid Radiative Transfer Model (RRTM) (Mlawer et al., 1997)
Shortwave radiation scheme Dudhia (Dudhia, 1989)
Boundary-layer scheme Asymmetric Convective Model version 2 (ACM2) (Pleim, 2007)
Urban surface scheme Urban Canopy Model (UCM) (Chen et al., 2011)

2.0 µgm−3) for O3. The total measurement uncertainty in
these two instruments was estimated to be approximately 5 %
(Zhang et al., 2014).

Two monitoring sites, Tiyuxi (TYX) site and YangJi (YJ)
site, were selected for this study (Fig. 7c). The observational
data from TYX were used for modeling evaluation because
TYX is located inside the simulation area and thus these data
could be used for comparison with the model results. In ad-
dition, YJ is located near but not within the simulation street
network. The observational data from YJ could be used as
the background concentration data for the modeling. Due to
the lack of NO observational data, the concentration ratio of
NO2 to NO was assumed as 4 : 1 in this study.

4 Application of the ROE model to Guangzhou

4.1 On-road emission inventory from the ROE model

4.1.1 Overview of the emission inventory

Using the high-resolution spatial and temporal traffic data
from the map application, the emission inventory of on-

road vehicles from the ROE model was established for this
study. Table 2 shows the annual emissions from vehicles
in Guangzhou city compared with two other gridded emis-
sion inventories in China: the MEIC model (http://www.
meicmodel.org/, last access: 2 September 2019) and a PRD
region local emission inventory (Zheng et al., 2009b). These
two emission inventories used the top-down method to es-
tablish on-road emission inventories. Unlike the bottom-up
method used in this study, these two inventories first calcu-
lated the total emissions based on the VKT data of vehicle
categories. In the MEIC inventory, the total number of vehi-
cles was obtained from the relationship between total vehicle
ownership and economic development (Zheng et al., 2014),
while the PRD inventory acquired information on the number
of vehicles from the city-level Guangzhou Statistical Year-
book. Then, the spatial distribution of these two inventories
was established based on the road network density.

Given the shorter total road length and traffic control poli-
cies in urban areas (Fig. 3), the urban on-road emissions of
CO, NOx , HC, PM2.5, and PM10 comprised only 13.1 %,
8.8 %, 12.7 %, 8.2 %, and 9.1 % of the total on-road emis-
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Figure 3. Traffic control area.

Table 2. Annual on-road emissions in Guangzhou (unit:
104 Mg yr−1).

CO NOx HC PM2.5 PM10

Urban 4.61 1.07 0.52 0.04 0.05
This study Suburban 30.61 10.98 3.58 0.45 0.50

Total 35.22 12.05 4.10 0.49 0.55

MEIC-2016 (Gridded) 43.56 8.45 9.26 0.46 0.47
PRD-2015 (Gridded) 28.89 6.99 4.65 0.52 0.52

sions, respectively, suggesting that the suburban areas are the
dominant contributor to on-road emissions in Guangzhou.

In general, the difference between the amounts of PM2.5
and PM10 was smaller than that for other gaseous emissions
among different inventories. This was because the uncer-
tainty in particulate matter emission factors was lower than
the corresponding values of the other gaseous emissions,
which led to the large difference for the gaseous emissions
and the smaller differences for PM2.5 and PM10. For NOx

emissions, however, this study showed a higher NOx esti-
mate than those in the other two inventories. One of the rea-
sons for the higher NOx estimate may be the application of
the updated LPG bus emission factors in this study. Based on
a previous local emission factor study, the NOx emission fac-

tor of an LPG-fueled bus is 1.7 times that of a diesel-fueled
bus in Guangzhou (Zhang et al., 2013). The results in Fig. 8
show that the NOx emissions attributable to buses in urban
and suburban areas were 20.5 % and 10.8 % of the total NOx

emissions, respectively, showing that the LPG-fueled buses
may be responsible for higher NOx estimates in this study
compared to those in the other two inventories.

As shown in Table 3, the emission contribution of lo-
cal roads in urban areas is the highest component because
of the total length of the local roads, which is 5.4 times
and 4.8 times that of highways and arterial roads in urban
areas, respectively. Although the total length of the high-
ways is shorter, the traffic volume on the highway is much
higher than that on the local roads (Fig. 4), thus caus-
ing the highest contribution of emissions from the subur-
ban areas. Moreover, the emission contributions from ur-
ban and suburban areas differ on weekdays and week-
ends. In urban areas, the daily total weekday and week-
end emissions are 129.94 and 118.29 Mg d−1 of CO, 30.15
and 27.71 Mg d−1 of NOx , 14.74 and 13.40 Mg d−1 of HC,
1.27 and 1.16 Mg d−1 of PM2.5, and 1.41 and 1.29 Mg d−1

of PM10, respectively. In suburban areas, the total week-
day and weekend emissions are 873.97 and 758.41 Mg d−1

of CO, 315.10 and 267.91 Mg d−1 of NOx , 102.46 and
88.22 Mg d−1 of HC, 13.01 and 10.98 Mg d−1 of PM2.5, and
14.45 and 12.19 Mg d−1 of PM10, respectively. The total
respective emissions of CO, NOx , HC, PM2.5, and PM10
on a weekday are 114.5 %, 116.8 %, 115.3 %, 117.6 %, and
117.7 % of the values on a weekend, respectively.

4.1.2 Spatial distribution of emissions

Due to the vehicular activities, the spatial distribution of on-
road emissions was consistent with the structure of the street
network. For a better description of this spatial distribution,
the emissions were mapped onto a 1 km resolution fishnet
pattern and the total emissions of one grid cell were the sum
of all on-road emissions from within the same grid cell. The
spatial distribution of each pollutant is shown in Fig. 9. Over-
all, the high-value grid cells were generally located along the
highways. In suburban areas, high-value areas located away
from the highways and arterial roads normally denoted sub-
urban town centers that had more local roads and higher traf-
fic volume density. In urban areas, the high-value areas were
more closely related to the densities of the urban local roads.
The emission hotspots were less prominent in urban areas
than in suburban areas due to the strict traffic control policies
in urban area. The spatial distribution indicated that the next
on-road emissions control policy should pay more attention
to the control of vehicles in suburban areas.

Moreover, the spatial distributions of these three emission
inventories were compared in this study. Figure 10 shows the
distributions of CO from the three different inventories. The
results of both MEIC-2016 and PRD-2015 showed the ur-
ban areas as emission hotspots. However, the results from
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Figure 4. Diurnal variation in average traffic speed and traffic volume in (a, b) urban area and (c, d) suburban area during weekday and
weekend.

Figure 5. The percentage of (a) vehicle classification and (b) emission standard.
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Table 3. Daily emissions on different road types in urban and suburban areas (unit: Mg d−1).

Road type Length (km) CO NOx HC PM2.5 PM10

Weekday urban highway 301.87 9.71 3.15 1.02 0.11 0.12
artery 337.19 17.24 4.95 1.88 0.19 0.21
local 1629.92 102.99 22.05 11.84 0.97 1.08

suburban highway 2316.73 417.49 168.29 45.51 6.50 7.22
artery 747.63 61.12 26.54 7.24 1.11 1.23
local 8867.69 395.36 120.27 49.71 5.40 6.00

Weekend urban highway 301.87 7.47 2.34 0.79 0.08 0.09
artery 337.19 13.20 4.23 1.40 0.15 0.17
local 1629.92 97.62 21.14 11.21 0.93 1.03

suburban highway 2316.73 428.30 156.78 47.14 6.07 6.74
artery 747.63 59.20 26.56 6.99 1.10 1.22
local 8867.69 270.91 84.57 34.09 3.81 4.23

Figure 6. Fuel type percentage of each vehicle classification.

the ROE model were much lower for such areas. This may
be due to the fact that the ROE model considers the traffic
control policies, while the other two inventories do not. In
suburban town centers, especially in the eastern and southern
parts of Guangzhou, all three inventories showed the same
results, namely that these areas were large contributors of
on-road emissions. Notably, highways and arterial roads also
contributed high emissions in all three inventories.

4.1.3 Emission contributions of vehicles by their
classification

The emission contributions of different vehicle classifica-
tions in the urban and suburban areas are shown in Fig. 8. As
LDVs accounted for the largest number, their emission con-
tribution comprised the dominant proportion of total emis-
sions in urban areas for each pollutant. The contribution per-
centages of CO, HC, NOx , PM2.5, and PM10 were 80.9 %,
84.1 %, 26.4 %, 38.3 %, and 38.2 %, respectively. HDVs

were the second largest contributor to on-road emissions, the
relevant percentages being 5.8 %, 2.9 %, 30.3 %, 35.2 %, and
35.2 % for CO, HC, NOx , PM2.5, and PM10, respectively. As
for the buses, except for the contribution of NOx which ac-
counted for 20.5 % of the total emissions mentioned above,
the proportions of the other pollutants were less than 2 % be-
cause of the use of LPG as fuel. In the case of trucks, the total
contribution of LDTs, MDTs, and HDTs were 10.3 %, 9.3 %,
21.2 %, 23.3 %, and 23.3 % for CO, HC, NOx , PM2.5, and
PM10, respectively, considering the traffic control policies in
the urban areas. The contribution of taxis was less than 1 %
because of the small number of taxis and their use of LPG.
In suburban areas, the LDVs were the dominant contribu-
tor of CO and HC emissions because of their high numbers.
For NOx , PM2.5, and PM10, however, the HDT provided the
largest contribution at 36.5 %, 43.2 %, and 43.3 %, respec-
tively. Moreover, LDVs, HDVs, and buses were important
contributors of NOx at 19.4 %, 17.4 %, and 10.8 %, respec-
tively. Regarding particulate matter, the respective percent-
ages of emissions (for both PM2.5 and PM10) owing to LDVs,
HDVs, and LDTs were 19.7 %, 20.5 %, and 9.0 %, suggest-
ing that these vehicles were also important sources of both
PM2.5 and PM10.

4.2 Application of the ROE model’s results to the
street-level air quality model

4.2.1 Modeling performance in Guangzhou urban area

During the simulation period, the model results were evalu-
ated for the TYX observation site located within the street
network. The on-road emissions were provided by the ROE
model, as discussed previously. Street segments to which
high NOx emission values were attributed were also respon-
sible for high HC emissions because of the positive relation-
ship between traffic volume and on-road emissions as shown
in Fig. 11.
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Figure 7. Simulation domain from regional scale to street-level scale: (a) four times nested simulation for WRF; (b) domains 3 and 4
covering the Pearl River Delta region and Guangzhou city, the innermost box corresponds to the Tianhe District; (c) 31 street segments and
two observation sites (triangles) within the MUNICH study domain.

Figure 8. Emission contribution of each vehicle classification in (a) urban area and (b) suburban area.

The time series for the simulated NO2 and O3 concen-
trations within the street network were compared with the
observed concentrations (Fig. 12). As the results show, day-
time NO2 concentrations were overestimated while night-
time concentrations were underestimated during the simula-
tion period. The O3 concentrations, however, were underpre-
dicted during daytime and overpredicted at nighttime. Sev-
eral modeling sensitivity cases were analyzed to identify
what factors may have affected the model simulation. The
sensitivity analysis results are provided in the Supplement
Sect. S3. Typically, the overestimated background concen-
trations of NO2 and O3 were attributed as the reason for the
overprediction of the daytime NO2 and nighttime O3 concen-
trations, respectively. The underestimated NO titration was
the other main reason for the overprediction of O3 and the un-
derprediction of NO2 concentrations at night. Due to the only
consideration of on-road emission in the simulation street
network, daytime O3 concentrations were underpredicted in
the results.

Moreover, the performance statistics for NO2 and O3 are
shown in Table 4. Here, the statistical measures of the ob-

servation (OBS) mean, simulation (SIM) mean, mean bias
(MB), normalized mean bias (NMB), normalized mean er-
ror (NME), mean relative bias (MRB), mean relative error
(MRE), root-mean-squared error (RMSE), and the correla-
tion coefficient (CORR) were used to validate the model. The
NMB, NME, and CORR values of NO2 and O3 in this study
were within the recommended ranges in the MEP Technical
Guide for Air Quality Model Selection (MEP, 2012). These
recommended values were −40 % < NMB < 50 %, NME <

80 %, and R2 > 0.3 for NO2 and −15 % < NMB < 15 %,
NME < 35 %, and R2 > 0.4 for O3. Additionally, the values
obtained in this study fell within the range of those reported
by other modeling studies in Guangzhou; the NMB, NME,
and RMSE values for simulated urban NO2 in Guangzhou
ranged from −27.5 % to −6 %, 29.2 % to 53.0 %, and 16 to
37.3, respectively, and the corresponding ranges for O3 were
from −21.2 % to 20.0 %, 38.2 % to 98 %, and 9.4 to 40.1
(Che et al., 2011; Fan et al., 2015; Wang et al., 2016). Over-
all, the model showed good simulation performance and can
be applied to future studies investigating the impact of on-
road vehicles on air quality.
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Figure 9. Spatial distribution of (a) CO, (b) NOx , (c) HC, (d) PM2.5, and (e) PM10 from the on-road emissions in Guangzhou (blue lines:
highways; green lines: arterial roads; local roads are not shown).

Figure 10. Spatial distribution of CO from (a) ROE model, (b) MEIC-2016, and (c) PRD-2015 in Guangzhou.
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Figure 11. The spatial distribution of weekday (a) NOx and (b) HC emissions in the simulated street network.

Figure 12. Time series of (a) NO2 and (b) O3 during the simulation period. (solid black line: observation; dashed red line: simulation).

4.2.2 Impact of traffic volume variations on air quality

To investigate how traffic volume change affects air quality
at the street level, a Chinese national holiday was chosen
as the target simulation period for the modeling. Figure 13
shows the diurnal variation in the traffic volume during the
national holiday, normal weekday, and normal weekend be-
fore and after the holiday in the simulation street network. On
the normal weekday, two typical rush hour trends appeared
during the 08:00–10:00 and 17:00–19:00 periods (although
28 April was a Saturday, it was a normal workday to com-
pensate for the holiday). For the normal weekend and the
national holiday, the peak in traffic volume was noted be-
tween 14:00 and 16:00 and no rush hour peak occurred on
these days. At nighttime, not much difference was noted for
the traffic volumes on the normal weekday, normal weekend,
and national holiday, especially after midnight. However, the
higher traffic volume between 21:00 and 23:00 on 28 April
at night may have been caused by people traveling out of the
city before the national holiday (e.g., returning home across
the city or traveling to other places).

Three sensitivity cases were carried out to study the impact
of traffic volume change on the air quality in urban areas:
(1) in the national holiday case, wherein the on-road emis-

Figure 13. The diurnal variation in the total traffic volume in the
simulation street network (solid line: normal weekday; dashed line:
national holiday; dotted line: normal weekend).

sions between 29 April and 1 May were regarded as the orig-
inal emissions during the simulation period (this represents
the base case); (2) in the normal weekday case, diurnal on-
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Table 4. The performance statistics for NO2 and O3 in modeling (unit: µgm−3).

Mean

OBSa SIMb MBc NMBd NMEe MRBf MREg RMSEh CORRi

NO2 30.8 35.4 4.7 15.2 % 68.8 % 3.0 % 3.2 % 25.7 0.90
O3 60.9 59.3 −1.6 −2.7 % 24.3 % < 0.1 % 0.3 % 18.7 0.80

a OBS (observation). b SIM (simulation). c MB (mean bias). d NMB (normalized mean bias). e NME (normalized mean error).
f MRB (mean relative bias). g MRE (mean relative error). h RMSE (root-mean-squared error). i CORR (correlation coefficient).

road emissions for three national holidays were replaced by
the emissions of 28 April; and (3) in the normal weekend
case, the national holiday period emissions were replaced by
the diurnal on-road emissions of 5 May. The diurnal varia-
tions in NOx and O3 in the three cases are shown in Fig. 14.
During 00:00–05:00, because of similar traffic volume, there
were no large differences in the NOx and O3 concentrations
during this time. Due to the morning rush hour, the NOx con-
centrations for the normal weekday case were much higher
than those for the national holiday case in the morning. As
shown in Table 5, the NOx concentrations were 12.0 %–
26.5 % higher for the normal weekday case during this time.
In the normal weekend case too, the NOx concentrations si-
multaneously increased by 9.1 % compared to those on the
national holiday in the morning. This increase was caused
by people traveling for normal weekend engagements. In the
afternoon, however, the difference between the NOx concen-
trations was less than 10 % due to the rising traffic volume
on the national holiday. During the evening rush hour, al-
though the traffic volume on the normal weekday was 1.3
times that on the national holiday, the maximum difference
between the NOx concentrations was only 7.3 %. This shows
that the variations in NOx concentrations were affected to a
greater extent by the background concentrations (i.e., bound-
ary conditions) in the evening.

Compared with the national holiday case, the O3 concen-
trations were much lower in the normal weekday case. In the
afternoon, as shown in Table 6, when photochemical reac-
tions are more prevalent, the national holiday O3 concentra-
tions exceeded those on normal weekdays and weekends by
13.9 % and 10.6 %, respectively. This is because the simula-
tion street network in the urban areas is in the VOC-sensitive
(volatile organic compound) regime (Ye et al., 2016). The
O3 concentrations were positively correlated with the VOC
emissions. As the NOx emissions were higher than the VOC
emissions, the reduction in the NOx emissions was also much
higher than in the VOC emissions when the number of vehi-
cles decreased on the national holiday. The larger NOx emis-
sion reduction led to a higher VOCs-to-NOx emission ratio,
which resulted in a higher O3 concentration during the na-
tional holiday (Sanford and He, 2002).

5 Discussion and conclusions

Using real-world traffic information, the Real-time On-road
Emission (ROE v1.0) model can provide real-time and high-
resolution emission inventories for regional or street-level
air quality models in China. The results show that the ROE
model can simulate the emissions of CO, NOx , HC, PM2.5,
PM10, and any other pollutant provided the relevant emis-
sion factors are included in the model. (This aspect will
be updated in subsequent releases.) As it uses the bottom-
up method, the ROE model facilitates the calculation of the
emissions in each street segment.

In this study, the traffic information of Guangzhou was
obtained from the Gaode Map, the data for which are col-
lected from map users while they are driving. The geographic
and speed information were sourced from the map users’
GPS devices and can be used through the map API. Us-
ing the ROE model and fully considering the traffic control
policies of Guangzhou city, the annual total on-road emis-
sions of CO, NOx , HC, PM2.5, and PM10 were modeled
to be 35.22× 104, 12.05× 104, 4.10× 104, 0.49× 104, and
0.55× 104 Mg yr−1, respectively. Spatial distribution analy-
sis showed that hotspots of on-road emissions were situated
along the highways and suburban town centers. The com-
parison of spatial distribution between the ROE model’s re-
sults and those of two other inventories showed that the ROE
model provided lower urban emissions as it considered the
traffic control polices. However, it should be noted that this
comparison was only preliminary. The spatial resolutions of
the three inventories are inconsistent in this study. Moreover,
due to the lack of temporal information about the other two
emission inventories, a comparison of the temporal differ-
ence could not be conducted. Future studies should focus on
improving the accuracy of such comparisons.

Owing to the number of vehicles and their respective dis-
tributions, LDVs constituted the dominant source of on-road
emissions in Guangzhou. In suburban areas, however, HDTs
were the highest contributors of NOx , PM2.5, and PM10.
Daily emissions of CO, NOx , HC, PM2.5, and PM10 on a
weekday were found to be 14.5 %, 16.8 %, 15.3 %, 17.6 %,
and 17.7 % higher than the daily emissions on a weekend,
respectively. However, due to the lack of street-level vehicle
fleet information, this study applied a city-level average uni-
form percentage for every street segment. This may increase

www.geosci-model-dev.net/13/23/2020/ Geosci. Model Dev., 13, 23–40, 2020



36 L. Wu et al.: Development of the Real-time On-road Emission (ROE v1.0) model

Table 5. Daytime percentage difference of NOx compared to national holiday case.

Time 06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00

Normal weekday 12.7 21.7 16.8 26.5 14.7 12.0 4.9 0.6 8.6 2.2 0.7 0.2 7.3 5.9 7.1
Normal weekend −4.4 0.1 9.1 6.7 0.2 7.0 1.2 2.6 6.2 0.8 −0.6 −0.9 2.1 −5.7 4.9

Table 6. Daytime percentage difference of O3 compared to national holiday case.

Time 06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00

Normal weekday −4.5 −15.7 −52.8 −48.9 −37.5 −25.9 −15.6 0.2 −7.9 −13.9 −7.4 −11.1 −46.3 −38.4 −32.3
Normal weekend 2.9 6.3 −2.6 −4.9 −15.0 0.5 −4.0 −1.6 −5.7 −10.6 −0.4 12.4 −15.3 −0.1 3.7

Figure 14. The (a) NOx and (b) O3 diurnal variation in different sensitivity cases in the simulation street network.

the uncertainty in the inventory but this aspect can be im-
proved upon, provided additional data become available in
the future. Given the high spatial and temporal resolutions of
the emission inventory of the ROE model, three sensitivity
cases were analyzed to study the effect of vehicular on-road
emissions on urban street-level air quality. On a national holi-
day, NOx concentrations were 12.0 %–26.5 % less than those
on a normal weekday as no morning rush hours occurred on
holidays. Moreover, compared with the normal weekend, the
NOx concentrations on a national holiday also show a de-
crease of 9.1 % in the peak value in the morning. However,
the reduction in the NOx concentrations in the afternoon was
smaller than that in the morning, suggesting that the trans-
portation of NOx from the surrounding areas was the main
reason for the variation in the afternoon NOx concentrations.
In addition, as the simulation street network lies in the VOC-
sensitive regime, the lower traffic on a national holiday and a
normal weekend caused the NOx and VOC emissions to be
lower than those on a normal weekday. However, the reduc-
tions in NOx were higher than the decrease in VOC emis-
sions, which led to a higher VOC-to-NOx emission ratio and
O3 concentrations on holidays and normal weekends. In this
study, only 31 main street segments were selected to study
the impact of a holiday on air quality in a certain urban area
of Guangzhou. Additional investigations are required to un-

derstand the variations in street-level air quality in urban or
suburban areas of a megacity. The results of the ROE model
showed that the suburban town centers of Guangzhou served
as emission hotspots. These areas had relatively higher emis-
sions than the other suburban areas and less stringent control
policies than the urban area, which suffers from more serious
air quality problems.

In general, the ROE model could provide a high-resolution
on-road emission inventory when the real-time traffic infor-
mation and emission factors were fed into the model. It is
worth noting that the ROE model is highly dependent on the
ITS traffic data. For economically underdeveloped cities, this
aspect may pose a barrier against the use of the ROE model.
In addition, China is promoting the CHINA VI emission
standards for on-road vehicles. The ROE model only con-
siders Pre-CHINA I to CHINA V currently. Thus, the model
will be updated in the near future to include the CHINA VI
emission standards.

Recently studies had shown that traffic forecasting mod-
els are effective within cities (Min et al., 2009; Cortez et al.,
2012; Vlahogianni et al., 2014). These models allow one to
obtain predicted traffic-based on-road emissions. Combined
with the meteorological forecasting systems and regional air
quality forecasting systems, which provide the meteorolog-
ical and background concentration predictions, respectively,
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street-level air quality models could be used for street-level
air quality forecasting as well.

In summary, the newly developed ROE model was con-
firmed to be effective for analyzing real-time city-scale traffic
emissions and performing high-resolution air quality assess-
ments in the street networks of Guangzhou city. The method-
ologies presented in this work can be further extended to
more typical cities, urban districts in China, or other coun-
tries.
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